Distill or **Annotate?** Cost-Efficient Fine-Tuning of Compact Models

Junmo Kang

Wei Xu

Alan Ritter

Q. Given a fixed budget, how to build a compact model in a cost-efficient way?

Introduction

Q. Given a fixed budget, how to build a compact model in a cost-efficient way?

Introduction

Strategy 1: annotate more data to directly train a small model

3

Q. Given a fixed budget, how to build a compact model in a cost-efficient way?

Introduction

Q. Given a fixed budget, how to build a compact model in a cost-efficient way?

Introduction

Cost Estimations

Task & Annotation Cost

Dataset	Task	\$ per Label
WLP	Named Entity Recognition	\$0.26
S TANCEOSAURUS	Stance Classification	\$0.364
FEVER	Fact Verification	\$0.129
MULTIPITID	Paraphrase Identification	\$0.2
MULTIPITGEN	Paraphrase Generation	\$0.371
Natural Questions	Question Answering	\$0.129

Cost Estimations

Task & Annotation Cost

Dataset	Task	\$ per Label
WLP	Named Entity Recognition	\$0.26
STANCEOSAURUS	Stance Classification	\$0.364
FEVER	Fact Verification	\$0.129
MULTIPITID	Paraphrase Identification	\$0.2
MULTIPITGEN	Paraphrase Generation	\$0.371
Natural Questions	Question Answering	\$0.129

Computational Cost

\$1.875 per 1 GPU hour (est. based on A100 in Google Cloud Platform)

Main Results

Evaluation

Main Results

Evaluation

Main Results

85

Main Results

STANCEOSAURUS (F1)

Starting #Data: 5K (\$1820)

FEVER (Accuracy)

Starting #Data: 5K (\$645)

MULTIPITId (Accuracy) Starting #Data: 5K (\$1000) 80.6 80.5 81.1 81.9

MULTIPITGen (BERT-iBLEU)

NATURAL QUESTIONS (F1)

Starting #Data: 10K (\$1290)

T5-Small (Ann.) T5-XXL => T5-Small (Dist.)

Main Results

WLP (F1) Starting #Data: 1K (\$260)

STANCEOSAURUS (F1)

Starting #Data: 1K (\$364)

FEVER (Accuracy)

Starting #Data: 1K (\$129)

MULTIPITId (Accuracy) Starting #Data: 1K (\$200)

MULTIPITGen (BERT-iBLEU)

NATURAL QUESTIONS (F1) Starting #Data: 1K (\$129)

T5-Small (Ann.) T5-XXL => T5-Small (Dist.)

Evaluation

Evaluation

Evaluation

Evaluation

Evaluation

GPT-3.5 as an Annotator

Knowledge Distillation with APIs

(GPT-3 as cheaper annotators*)

*Wang et al., 2022, Want To Reduce Labeling Cost? GPT-3 Can Help?

Evaluation

GPT-3.5 as an Annotator

*Wang et al., 2022, Want To Reduce Labeling Cost? GPT-3 Can Help?

Q. Given a limited budget, how to invest it to train a compact model in an economically efficient manner?

✓ In general, data annotation might not be the best practical solution in light of cost-efficiency; Scale up, then distill !

Q. Given a limited budget, how to invest it to train a compact model in an economically efficient manner?

✓ In general, data annotation might not be the best practical solution in light of cost-efficiency; Scale up, then distill ! ✓ For the best performance, however, data annotation is essential despite its inefficiency

Dist.: \$161 (81.0 F1) - max

Ann. : \$1,980 (81.0 F1)

\$17,443 (87.5 F1) - max

Q. Given a limited budget, how to invest it to train a compact model in an economically efficient manner?

✓ In general, data annotation might not be the best practical solution in light of cost-efficiency; Scale up, then distill ! ✓ For the best performance, however, data annotation is essential despite its inefficiency

Synthetic data generation using GPT-3.5
 could be cost-efficient compared to
 humans, but still limited

Q. Given a limited budget, how to invest it to train a compact model in an economically efficient manner?

In general, data annotation might not be the best practical solution in light of cost-efficiency; Scale up, then distill ! For the best performance, however, data annotation is essential despite its inefficiency

Synthetic data generation using GPT-3.5
 could be cost-efficient compared to
 humans, but still limited

 More details and analyses in the paper, such as different sizes of large & compact models